CVE-2025-38234 |
Description: In the Linux kernel, the following vulnerability has been resolved:
sched/rt: Fix race in push_rt_task
Overview
========
When a CPU chooses to call push_rt_task and picks a task to push to
another CPU's runqueue then it will call find_lock_lowest_rq method
which would take a double lock on both CPUs' runqueues. If one of the
locks aren't readily available, it may lead to dropping the current
runqueue lock and reacquiring both the locks at once. During this window
it is possible that the task is already migrated and is running on some
other CPU. These cases are already handled. However, if the task is
migrated and has already been executed and another CPU is now trying to
wake it up (ttwu) such that it is queued again on the runqeue
(on_rq is 1) and also if the task was run by the same CPU, then the
current checks will pass even though the task was migrated out and is no
longer in the pushable tasks list.
Crashes
=======
This bug resulted in quite a few flavors of crashes triggering kernel
panics with various crash signatures such as assert failures, page
faults, null pointer dereferences, and queue corruption errors all
coming from scheduler itself.
Some of the crashes:
-> kernel BUG at kernel/sched/rt.c:1616! BUG_ON(idx >= MAX_RT_PRIO)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? pick_next_task_rt+0x6e/0x1d0
? do_error_trap+0x64/0xa0
? pick_next_task_rt+0x6e/0x1d0
? exc_invalid_op+0x4c/0x60
? pick_next_task_rt+0x...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38233 |
Description: In the Linux kernel, the following vulnerability has been resolved:
powerpc64/ftrace: fix clobbered r15 during livepatching
While r15 is clobbered always with PPC_FTRACE_OUT_OF_LINE, it is
not restored in livepatch sequence leading to not so obvious fails
like below:
BUG: Unable to handle kernel data access on write at 0xc0000000000f9078
Faulting instruction address: 0xc0000000018ff958
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP: c0000000018ff958 LR: c0000000018ff930 CTR: c0000000009c0790
REGS: c00000005f2e7790 TRAP: 0300 Tainted: G K (6.14.0+)
MSR: 8000000000009033 CR: 2822880b XER: 20040000
CFAR: c0000000008addc0 DAR: c0000000000f9078 DSISR: 0a000000 IRQMASK: 1
GPR00: c0000000018f2584 c00000005f2e7a30 c00000000280a900 c000000017ffa488
GPR04: 0000000000000008 0000000000000000 c0000000018f24fc 000000000000000d
GPR08: fffffffffffe0000 000000000000000d 0000000000000000 0000000000008000
GPR12: c0000000009c0790 c000000017ffa480 c00000005f2e7c78 c0000000000f9070
GPR16: c00000005f2e7c90 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 c00000005f3efa80 c00000005f2e7c60 c00000005f2e7c88
GPR24: c00000005f2e7c60 0000000000000001 c0000000000f9078 0000000000000000
GPR28: 00007fff97960000 c000000017ffa480 0000000000000000 c0000000000f9078
...
Call Trace:
check_heap_object+0x34/0x390 (unreliable)
__mutex_unlock_slowpath.isra.0+0xe4/0x230
seq_read_iter+0x430/0xa90
proc_reg_read_i...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38232 |
Description: In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix race between nfsd registration and exports_proc
As of now nfsd calls create_proc_exports_entry() at start of init_nfsd
and cleanup by remove_proc_entry() at last of exit_nfsd.
Which causes kernel OOPs if there is race between below 2 operations:
(i) exportfs -r
(ii) mount -t nfsd none /proc/fs/nfsd
for 5.4 kernel ARM64:
CPU 1:
el1_irq+0xbc/0x180
arch_counter_get_cntvct+0x14/0x18
running_clock+0xc/0x18
preempt_count_add+0x88/0x110
prep_new_page+0xb0/0x220
get_page_from_freelist+0x2d8/0x1778
__alloc_pages_nodemask+0x15c/0xef0
__vmalloc_node_range+0x28c/0x478
__vmalloc_node_flags_caller+0x8c/0xb0
kvmalloc_node+0x88/0xe0
nfsd_init_net+0x6c/0x108 [nfsd]
ops_init+0x44/0x170
register_pernet_operations+0x114/0x270
register_pernet_subsys+0x34/0x50
init_nfsd+0xa8/0x718 [nfsd]
do_one_initcall+0x54/0x2e0
CPU 2 :
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
PC is at : exports_net_open+0x50/0x68 [nfsd]
Call trace:
exports_net_open+0x50/0x68 [nfsd]
exports_proc_open+0x2c/0x38 [nfsd]
proc_reg_open+0xb8/0x198
do_dentry_open+0x1c4/0x418
vfs_open+0x38/0x48
path_openat+0x28c/0xf18
do_filp_open+0x70/0xe8
do_sys_open+0x154/0x248
Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu().
and same is happening on latest 6.14 kernel as well:
[ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty
...
[ 285.455918] Unable to handle kernel paging r...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38231 |
Description: In the Linux kernel, the following vulnerability has been resolved:
nfsd: Initialize ssc before laundromat_work to prevent NULL dereference
In nfs4_state_start_net(), laundromat_work may access nfsd_ssc through
nfs4_laundromat -> nfsd4_ssc_expire_umount. If nfsd_ssc isn't initialized,
this can cause NULL pointer dereference.
Normally the delayed start of laundromat_work allows sufficient time for
nfsd_ssc initialization to complete. However, when the kernel waits too
long for userspace responses (e.g. in nfs4_state_start_net ->
nfsd4_end_grace -> nfsd4_record_grace_done -> nfsd4_cld_grace_done ->
cld_pipe_upcall -> __cld_pipe_upcall -> wait_for_completion path), the
delayed work may start before nfsd_ssc initialization finishes.
Fix this by moving nfsd_ssc initialization before starting laundromat_work.
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38230 |
Description: In the Linux kernel, the following vulnerability has been resolved:
jfs: validate AG parameters in dbMount() to prevent crashes
Validate db_agheight, db_agwidth, and db_agstart in dbMount to catch
corrupted metadata early and avoid undefined behavior in dbAllocAG.
Limits are derived from L2LPERCTL, LPERCTL/MAXAG, and CTLTREESIZE:
- agheight: 0 to L2LPERCTL/2 (0 to 5) ensures shift
(L2LPERCTL - 2*agheight) >= 0.
- agwidth: 1 to min(LPERCTL/MAXAG, 2^(L2LPERCTL - 2*agheight))
ensures agperlev >= 1.
- Ranges: 1-8 (agheight 0-3), 1-4 (agheight 4), 1 (agheight 5).
- LPERCTL/MAXAG = 1024/128 = 8 limits leaves per AG;
2^(10 - 2*agheight) prevents division to 0.
- agstart: 0 to CTLTREESIZE-1 - agwidth*(MAXAG-1) keeps ti within
stree (size 1365).
- Ranges: 0-1237 (agwidth 1), 0-348 (agwidth 8).
UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:1400:9
shift exponent -335544310 is negative
CPU: 0 UID: 0 PID: 5822 Comm: syz-executor130 Not tainted 6.14.0-rc5-syzkaller #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_shift_out_of_bounds+0x3c8/0x420 lib/ubsan.c:468
dbAllocAG+0x1087/0x10b0 fs/jfs/jfs_dmap.c:1400
dbDiscardAG+0x352/0xa20 fs/jfs/jfs_dmap.c:1613
jfs_ioc_trim+0x45a/0x6b0 fs/jfs/jfs_discard.c:105
jfs_ioctl+0x2cd/0x3e0 fs/jfs/ioctl.c:131
vfs_ioctl fs/ioctl.c:5...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38229 |
Description: In the Linux kernel, the following vulnerability has been resolved:
media: cxusb: no longer judge rbuf when the write fails
syzbot reported a uninit-value in cxusb_i2c_xfer. [1]
Only when the write operation of usb_bulk_msg() in dvb_usb_generic_rw()
succeeds and rlen is greater than 0, the read operation of usb_bulk_msg()
will be executed to read rlen bytes of data from the dvb device into the
rbuf.
In this case, although rlen is 1, the write operation failed which resulted
in the dvb read operation not being executed, and ultimately variable i was
not initialized.
[1]
BUG: KMSAN: uninit-value in cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
BUG: KMSAN: uninit-value in cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
__i2c_transfer+0xe25/0x3150 drivers/i2c/i2c-core-base.c:-1
i2c_transfer+0x317/0x4a0 drivers/i2c/i2c-core-base.c:2315
i2c_transfer_buffer_flags+0x125/0x1e0 drivers/i2c/i2c-core-base.c:2343
i2c_master_send include/linux/i2c.h:109 [inline]
i2cdev_write+0x210/0x280 drivers/i2c/i2c-dev.c:183
do_loop_readv_writev fs/read_write.c:848 [inline]
vfs_writev+0x963/0x14e0 fs/read_write.c:1057
do_writev+0x247/0x5c0 fs/read_write.c:1101
__do_sys_writev fs/read_write.c:1169 [inline]
__se_sys_writev fs/read_write.c:1166 [inline]
__x64_sys_writev+0x98/0xe0 fs/read_write.c:1166
x64_sys_call+0x222...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38228 |
Description: In the Linux kernel, the following vulnerability has been resolved:
media: imagination: fix a potential memory leak in e5010_probe()
Add video_device_release() to release the memory allocated by
video_device_alloc() if something goes wrong.
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38227 |
Description: In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: Terminating the subsequent process of initialization failure
syzbot reported a slab-use-after-free Read in vidtv_mux_init. [1]
After PSI initialization fails, the si member is accessed again, resulting
in this uaf.
After si initialization fails, the subsequent process needs to be exited.
[1]
BUG: KASAN: slab-use-after-free in vidtv_mux_pid_ctx_init drivers/media/test-drivers/vidtv/vidtv_mux.c:78 [inline]
BUG: KASAN: slab-use-after-free in vidtv_mux_init+0xac2/0xbe0 drivers/media/test-drivers/vidtv/vidtv_mux.c:524
Read of size 8 at addr ffff88802fa42acc by task syz.2.37/6059
CPU: 0 UID: 0 PID: 6059 Comm: syz.2.37 Not tainted 6.14.0-rc5-syzkaller #0
Hardware name: Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xd9/0x110 mm/kasan/report.c:634
vidtv_mux_pid_ctx_init drivers/media/test-drivers/vidtv/vidtv_mux.c:78
vidtv_mux_init+0xac2/0xbe0 drivers/media/test-drivers/vidtv/vidtv_mux.c:524
vidtv_start_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:194
vidtv_start_feed drivers/media/test-drivers/vidtv/vidtv_bridge.c:239
dmx_section_feed_start_filtering drivers/media/dvb-core/dvb_demux.c:973
dvb_dmxdev_feed_start drivers/media/dvb-core/dmxdev.c:508 [inline]
dvb_dmxdev_...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38226 |
Description: In the Linux kernel, the following vulnerability has been resolved:
media: vivid: Change the siize of the composing
syzkaller found a bug:
BUG: KASAN: vmalloc-out-of-bounds in tpg_fill_plane_pattern drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2608 [inline]
BUG: KASAN: vmalloc-out-of-bounds in tpg_fill_plane_buffer+0x1a9c/0x5af0 drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2705
Write of size 1440 at addr ffffc9000d0ffda0 by task vivid-000-vid-c/5304
CPU: 0 UID: 0 PID: 5304 Comm: vivid-000-vid-c Not tainted 6.14.0-rc2-syzkaller-00039-g09fbf3d50205 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
tpg_fill_plane_pattern drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2608 [inline]
tpg_fill_plane_buffer+0x1a9c/0x5af0 drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2705
vivid_fillbuff drivers/media/test-drivers/vivid/vivid-kthread-cap.c:470 [inline]
vivid_thread_vid_cap_tick+0xf8e/0x60d0 drivers/media/test-drivers/vivid/vivid-kthread-cap.c:629
vivid_thread_vid_cap+0x8aa/0xf30 drivers/media/test-drivers/vivid/vivid-kthread-cap.c:767
kthread+0x7a9/0x920 kernel/kthr...
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|
CVE-2025-38225 |
Description: In the Linux kernel, the following vulnerability has been resolved:
media: imx-jpeg: Cleanup after an allocation error
When allocation failures are not cleaned up by the driver, further
allocation errors will be false-positives, which will cause buffers to
remain uninitialized and cause NULL pointer dereferences.
Ensure proper cleanup of failed allocations to prevent these issues.
EPSS Score: 0.02%
July 4th, 2025 (3 days ago)
|