CVE-2024-47750 |
Description: In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix Use-After-Free of rsv_qp on HIP08
Currently rsv_qp is freed before ib_unregister_device() is called
on HIP08. During the time interval, users can still dereg MR and
rsv_qp will be used in this process, leading to a UAF. Move the
release of rsv_qp after calling ib_unregister_device() to fix it.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47749 |
Description: In the Linux kernel, the following vulnerability has been resolved:
RDMA/cxgb4: Added NULL check for lookup_atid
The lookup_atid() function can return NULL if the ATID is
invalid or does not exist in the identifier table, which
could lead to dereferencing a null pointer without a
check in the `act_establish()` and `act_open_rpl()` functions.
Add a NULL check to prevent null pointer dereferencing.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47748 |
Description: In the Linux kernel, the following vulnerability has been resolved:
vhost_vdpa: assign irq bypass producer token correctly
We used to call irq_bypass_unregister_producer() in
vhost_vdpa_setup_vq_irq() which is problematic as we don't know if the
token pointer is still valid or not.
Actually, we use the eventfd_ctx as the token so the life cycle of the
token should be bound to the VHOST_SET_VRING_CALL instead of
vhost_vdpa_setup_vq_irq() which could be called by set_status().
Fixing this by setting up irq bypass producer's token when handling
VHOST_SET_VRING_CALL and un-registering the producer before calling
vhost_vring_ioctl() to prevent a possible use after free as eventfd
could have been released in vhost_vring_ioctl(). And such registering
and unregistering will only be done if DRIVER_OK is set.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47747 |
Description: In the Linux kernel, the following vulnerability has been resolved:
net: seeq: Fix use after free vulnerability in ether3 Driver Due to Race Condition
In the ether3_probe function, a timer is initialized with a callback
function ether3_ledoff, bound to &prev(dev)->timer. Once the timer is
started, there is a risk of a race condition if the module or device
is removed, triggering the ether3_remove function to perform cleanup.
The sequence of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ether3_ledoff
ether3_remove |
free_netdev(dev); |
put_devic |
kfree(dev); |
| ether3_outw(priv(dev)->regs.config2 |= CFG2_CTRLO, REG_CONFIG2);
| // use dev
Fix it by ensuring that the timer is canceled before proceeding with
the cleanup in ether3_remove.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47746 |
Description: In the Linux kernel, the following vulnerability has been resolved:
fuse: use exclusive lock when FUSE_I_CACHE_IO_MODE is set
This may be a typo. The comment has said shared locks are
not allowed when this bit is set. If using shared lock, the
wait in `fuse_file_cached_io_open` may be forever.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47744 |
Description: In the Linux kernel, the following vulnerability has been resolved:
KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock
Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock
on x86 due to a chain of locks and SRCU synchronizations. Translating the
below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on
CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the
fairness of r/w semaphores).
CPU0 CPU1 CPU2
1 lock(&kvm->slots_lock);
2 lock(&vcpu->mutex);
3 lock(&kvm->srcu);
4 lock(cpu_hotplug_lock);
5 lock(kvm_lock);
6 lock(&kvm->slots_lock);
7 lock(cpu_hotplug_lock);
8 sync(&kvm->srcu);
Note, there are likely more potential deadlocks in KVM x86, e.g. the same
pattern of taking cpu_hotplug_lock outside of kvm_lock likely exists with
__kvmclock_cpufreq_notifier():
cpuhp_cpufreq_online()
|
-> cpufreq_online()
|
-> cpufreq_gov_performance_limits()
|
-> __cpufreq_driver_target()
|
-> __target_index()
|
-> cpufreq_freq_transition_begin()
|
-> cpufreq_notify_transition()
|
-...
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47743 |
Description: In the Linux kernel, the following vulnerability has been resolved:
KEYS: prevent NULL pointer dereference in find_asymmetric_key()
In find_asymmetric_key(), if all NULLs are passed in the id_{0,1,2}
arguments, the kernel will first emit WARN but then have an oops
because id_2 gets dereferenced anyway.
Add the missing id_2 check and move WARN_ON() to the final else branch
to avoid duplicate NULL checks.
Found by Linux Verification Center (linuxtesting.org) with Svace static
analysis tool.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47742 |
Description: In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Block path traversal
Most firmware names are hardcoded strings, or are constructed from fairly
constrained format strings where the dynamic parts are just some hex
numbers or such.
However, there are a couple codepaths in the kernel where firmware file
names contain string components that are passed through from a device or
semi-privileged userspace; the ones I could find (not counting interfaces
that require root privileges) are:
- lpfc_sli4_request_firmware_update() seems to construct the firmware
filename from "ModelName", a string that was previously parsed out of
some descriptor ("Vital Product Data") in lpfc_fill_vpd()
- nfp_net_fw_find() seems to construct a firmware filename from a model
name coming from nfp_hwinfo_lookup(pf->hwinfo, "nffw.partno"), which I
think parses some descriptor that was read from the device.
(But this case likely isn't exploitable because the format string looks
like "netronome/nic_%s", and there shouldn't be any *folders* starting
with "netronome/nic_". The previous case was different because there,
the "%s" is *at the start* of the format string.)
- module_flash_fw_schedule() is reachable from the
ETHTOOL_MSG_MODULE_FW_FLASH_ACT netlink command, which is marked as
GENL_UNS_ADMIN_PERM (meaning CAP_NET_ADMIN inside a user namespace is
enough to pass the privilege check), and takes a userspace-provided
firmware name...
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47741 |
Description: In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race setting file private on concurrent lseek using same fd
When doing concurrent lseek(2) system calls against the same file
descriptor, using multiple threads belonging to the same process, we have
a short time window where a race happens and can result in a memory leak.
The race happens like this:
1) A program opens a file descriptor for a file and then spawns two
threads (with the pthreads library for example), lets call them
task A and task B;
2) Task A calls lseek with SEEK_DATA or SEEK_HOLE and ends up at
file.c:find_desired_extent() while holding a read lock on the inode;
3) At the start of find_desired_extent(), it extracts the file's
private_data pointer into a local variable named 'private', which has
a value of NULL;
4) Task B also calls lseek with SEEK_DATA or SEEK_HOLE, locks the inode
in shared mode and enters file.c:find_desired_extent(), where it also
extracts file->private_data into its local variable 'private', which
has a NULL value;
5) Because it saw a NULL file private, task A allocates a private
structure and assigns to the file structure;
6) Task B also saw a NULL file private so it also allocates its own file
private and then assigns it to the same file structure, since both
tasks are using the same file descriptor.
At this point we leak the private structure allocated by task A.
Besides the memory leak, there's also the det...
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|
CVE-2024-47740 |
Description: In the Linux kernel, the following vulnerability has been resolved:
f2fs: Require FMODE_WRITE for atomic write ioctls
The F2FS ioctls for starting and committing atomic writes check for
inode_owner_or_capable(), but this does not give LSMs like SELinux or
Landlock an opportunity to deny the write access - if the caller's FSUID
matches the inode's UID, inode_owner_or_capable() immediately returns true.
There are scenarios where LSMs want to deny a process the ability to write
particular files, even files that the FSUID of the process owns; but this
can currently partially be bypassed using atomic write ioctls in two ways:
- F2FS_IOC_START_ATOMIC_REPLACE + F2FS_IOC_COMMIT_ATOMIC_WRITE can
truncate an inode to size 0
- F2FS_IOC_START_ATOMIC_WRITE + F2FS_IOC_ABORT_ATOMIC_WRITE can revert
changes another process concurrently made to a file
Fix it by requiring FMODE_WRITE for these operations, just like for
F2FS_IOC_MOVE_RANGE. Since any legitimate caller should only be using these
ioctls when intending to write into the file, that seems unlikely to break
anything.
SSVC Exploitation: none
May 4th, 2025 (about 14 hours ago)
|