CVE-2023-52481 |
Description: In the Linux kernel, the following vulnerability has been resolved:
arm64: errata: Add Cortex-A520 speculative unprivileged load workaround
Implement the workaround for ARM Cortex-A520 erratum 2966298. On an
affected Cortex-A520 core, a speculatively executed unprivileged load
might leak data from a privileged load via a cache side channel. The
issue only exists for loads within a translation regime with the same
translation (e.g. same ASID and VMID). Therefore, the issue only affects
the return to EL0.
The workaround is to execute a TLBI before returning to EL0 after all
loads of privileged data. A non-shareable TLBI to any address is
sufficient.
The workaround isn't necessary if page table isolation (KPTI) is
enabled, but for simplicity it will be. Page table isolation should
normally be disabled for Cortex-A520 as it supports the CSV3 feature
and the E0PD feature (used when KASLR is enabled).
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|
CVE-2023-52478 |
Description: In the Linux kernel, the following vulnerability has been resolved:
HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect
hidpp_connect_event() has *four* time-of-check vs time-of-use (TOCTOU)
races when it races with itself.
hidpp_connect_event() primarily runs from a workqueue but it also runs
on probe() and if a "device-connected" packet is received by the hw
when the thread running hidpp_connect_event() from probe() is waiting on
the hw, then a second thread running hidpp_connect_event() will be
started from the workqueue.
This opens the following races (note the below code is simplified):
1. Retrieving + printing the protocol (harmless race):
if (!hidpp->protocol_major) {
hidpp_root_get_protocol_version()
hidpp->protocol_major = response.rap.params[0];
}
We can actually see this race hit in the dmesg in the abrt output
attached to rhbz#2227968:
[ 3064.624215] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
[ 3064.658184] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
Testing with extra logging added has shown that after this the 2 threads
take turn grabbing the hw access mutex (send_mutex) so they ping-pong
through all the other TOCTOU cases managing to hit all of them:
2. Updating the name to the HIDPP name (harmless race):
if (hidpp->name == hdev->name) {
...
hidpp->name = new_name;
}
3. Initializing the power_supply class for the battery (problematic!):
hidpp_initialize_battery()
{
...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52477 |
Description: In the Linux kernel, the following vulnerability has been resolved:
usb: hub: Guard against accesses to uninitialized BOS descriptors
Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h
access fields inside udev->bos without checking if it was allocated and
initialized. If usb_get_bos_descriptor() fails for whatever
reason, udev->bos will be NULL and those accesses will result in a
crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1
Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:hub_port_reset+0x193/0x788
Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9
RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310
RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840
RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000022e80c005 ...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52476 |
Description: In the Linux kernel, the following vulnerability has been resolved:
perf/x86/lbr: Filter vsyscall addresses
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):
__insn_get_emulate_prefix()
insn_get_emulate_prefix()
insn_get_prefixes()
insn_get_opcode()
decode_branch_type()
get_branch_type()
intel_pmu_lbr_filter()
intel_pmu_handle_irq()
perf_event_nmi_handler()
Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i)
Within this macro, this dereference occurs:
(insn)->next_byte
Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.
To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52475 |
Description: In the Linux kernel, the following vulnerability has been resolved:
Input: powermate - fix use-after-free in powermate_config_complete
syzbot has found a use-after-free bug [1] in the powermate driver. This
happens when the device is disconnected, which leads to a memory free from
the powermate_device struct. When an asynchronous control message
completes after the kfree and its callback is invoked, the lock does not
exist anymore and hence the bug.
Use usb_kill_urb() on pm->config to cancel any in-progress requests upon
device disconnection.
[1] https://syzkaller.appspot.com/bug?extid=0434ac83f907a1dbdd1e
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52474 |
Description: In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix bugs with non-PAGE_SIZE-end multi-iovec user SDMA requests
hfi1 user SDMA request processing has two bugs that can cause data
corruption for user SDMA requests that have multiple payload iovecs
where an iovec other than the tail iovec does not run up to the page
boundary for the buffer pointed to by that iovec.a
Here are the specific bugs:
1. user_sdma_txadd() does not use struct user_sdma_iovec->iov.iov_len.
Rather, user_sdma_txadd() will add up to PAGE_SIZE bytes from iovec
to the packet, even if some of those bytes are past
iovec->iov.iov_len and are thus not intended to be in the packet.
2. user_sdma_txadd() and user_sdma_send_pkts() fail to advance to the
next iovec in user_sdma_request->iovs when the current iovec
is not PAGE_SIZE and does not contain enough data to complete the
packet. The transmitted packet will contain the wrong data from the
iovec pages.
This has not been an issue with SDMA packets from hfi1 Verbs or PSM2
because they only produce iovecs that end short of PAGE_SIZE as the tail
iovec of an SDMA request.
Fixing these bugs exposes other bugs with the SDMA pin cache
(struct mmu_rb_handler) that get in way of supporting user SDMA requests
with multiple payload iovecs whose buffers do not end at PAGE_SIZE. So
this commit fixes those issues as well.
Here are the mmu_rb_handler bugs that non-PAGE_SIZE-end multi-iovec
payload user SDMA requests can ...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52473 |
Description: In the Linux kernel, the following vulnerability has been resolved:
thermal: core: Fix NULL pointer dereference in zone registration error path
If device_register() in thermal_zone_device_register_with_trips()
returns an error, the tz variable is set to NULL and subsequently
dereferenced in kfree(tz->tzp).
Commit adc8749b150c ("thermal/drivers/core: Use put_device() if
device_register() fails") added the tz = NULL assignment in question to
avoid a possible double-free after dropping the reference to the zone
device. However, after commit 4649620d9404 ("thermal: core: Make
thermal_zone_device_unregister() return after freeing the zone"), that
assignment has become redundant, because dropping the reference to the
zone device does not cause the zone object to be freed any more.
Drop it to address the NULL pointer dereference.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52472 |
Description: In the Linux kernel, the following vulnerability has been resolved:
crypto: rsa - add a check for allocation failure
Static checkers insist that the mpi_alloc() allocation can fail so add
a check to prevent a NULL dereference. Small allocations like this
can't actually fail in current kernels, but adding a check is very
simple and makes the static checkers happy.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52471 |
Description: In the Linux kernel, the following vulnerability has been resolved:
ice: Fix some null pointer dereference issues in ice_ptp.c
devm_kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2023-52470 |
Description: In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: check the alloc_workqueue return value in radeon_crtc_init()
check the alloc_workqueue return value in radeon_crtc_init()
to avoid null-ptr-deref.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|