CVE-2024-36936 |
Description: In the Linux kernel, the following vulnerability has been resolved:
efi/unaccepted: touch soft lockup during memory accept
Commit 50e782a86c98 ("efi/unaccepted: Fix soft lockups caused by
parallel memory acceptance") has released the spinlock so other CPUs can
do memory acceptance in parallel and not triggers softlockup on other
CPUs.
However the softlock up was intermittent shown up if the memory of the
TD guest is large, and the timeout of softlockup is set to 1 second:
RIP: 0010:_raw_spin_unlock_irqrestore
Call Trace:
? __hrtimer_run_queues
? hrtimer_interrupt
? watchdog_timer_fn
? __sysvec_apic_timer_interrupt
? __pfx_watchdog_timer_fn
? sysvec_apic_timer_interrupt
? __hrtimer_run_queues
? hrtimer_interrupt
? asm_sysvec_apic_timer_interrupt
? _raw_spin_unlock_irqrestore
? __sysvec_apic_timer_interrupt
? sysvec_apic_timer_interrupt
accept_memory
try_to_accept_memory
do_huge_pmd_anonymous_page
get_page_from_freelist
__handle_mm_fault
__alloc_pages
__folio_alloc
? __tdx_hypercall
handle_mm_fault
vma_alloc_folio
do_user_addr_fault
do_huge_pmd_anonymous_page
exc_page_fault
? __do_huge_pmd_anonymous_page
asm_exc_page_fault
__handle_mm_fault
When the local irq is enabled at the end of accept_memory(), the
softlockup detects that the watchdog on single CPU has not been fed for
a while. That is to say, even other CPUs will not be blocked by
spinlock, the current CPU might be stunk with local irq disabled for a
while, which hurts not only...
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|
CVE-2024-36935 |
Description: In the Linux kernel, the following vulnerability has been resolved:
ice: ensure the copied buf is NUL terminated
Currently, we allocate a count-sized kernel buffer and copy count bytes
from userspace to that buffer. Later, we use sscanf on this buffer but we
don't ensure that the string is terminated inside the buffer, this can lead
to OOB read when using sscanf. Fix this issue by using memdup_user_nul
instead of memdup_user.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36934 |
Description: In the Linux kernel, the following vulnerability has been resolved:
bna: ensure the copied buf is NUL terminated
Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from
userspace to that buffer. Later, we use sscanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using sscanf. Fix this issue by using memdup_user_nul
instead of memdup_user.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36933 |
Description: In the Linux kernel, the following vulnerability has been resolved:
nsh: Restore skb->{protocol,data,mac_header} for outer header in nsh_gso_segment().
syzbot triggered various splats (see [0] and links) by a crafted GSO
packet of VIRTIO_NET_HDR_GSO_UDP layering the following protocols:
ETH_P_8021AD + ETH_P_NSH + ETH_P_IPV6 + IPPROTO_UDP
NSH can encapsulate IPv4, IPv6, Ethernet, NSH, and MPLS. As the inner
protocol can be Ethernet, NSH GSO handler, nsh_gso_segment(), calls
skb_mac_gso_segment() to invoke inner protocol GSO handlers.
nsh_gso_segment() does the following for the original skb before
calling skb_mac_gso_segment()
1. reset skb->network_header
2. save the original skb->{mac_heaeder,mac_len} in a local variable
3. pull the NSH header
4. resets skb->mac_header
5. set up skb->mac_len and skb->protocol for the inner protocol.
and does the following for the segmented skb
6. set ntohs(ETH_P_NSH) to skb->protocol
7. push the NSH header
8. restore skb->mac_header
9. set skb->mac_header + mac_len to skb->network_header
10. restore skb->mac_len
There are two problems in 6-7 and 8-9.
(a)
After 6 & 7, skb->data points to the NSH header, so the outer header
(ETH_P_8021AD in this case) is stripped when skb is sent out of netdev.
Also, if NSH is encapsulated by NSH + Ethernet (so NSH-Ethernet-NSH),
skb_pull() in the first nsh_gso_segment() will make skb->data point
to the middle of the outer NSH or Ethernet header because the Ethern...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36932 |
Description: In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Prevent use-after-free from occurring after cdev removal
Since thermal_debug_cdev_remove() does not run under cdev->lock, it can
run in parallel with thermal_debug_cdev_state_update() and it may free
the struct thermal_debugfs object used by the latter after it has been
checked against NULL.
If that happens, thermal_debug_cdev_state_update() will access memory
that has been freed already causing the kernel to crash.
Address this by using cdev->lock in thermal_debug_cdev_remove() around
the cdev->debugfs value check (in case the same cdev is removed at the
same time in two different threads) and its reset to NULL.
Cc :6.8+ # 6.8+
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36931 |
Description: In the Linux kernel, the following vulnerability has been resolved:
s390/cio: Ensure the copied buf is NUL terminated
Currently, we allocate a lbuf-sized kernel buffer and copy lbuf from
userspace to that buffer. Later, we use scanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using scanf. Fix this issue by using memdup_user_nul instead.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36930 |
Description: In the Linux kernel, the following vulnerability has been resolved:
spi: fix null pointer dereference within spi_sync
If spi_sync() is called with the non-empty queue and the same spi_message
is then reused, the complete callback for the message remains set while
the context is cleared, leading to a null pointer dereference when the
callback is invoked from spi_finalize_current_message().
With function inlining disabled, the call stack might look like this:
_raw_spin_lock_irqsave from complete_with_flags+0x18/0x58
complete_with_flags from spi_complete+0x8/0xc
spi_complete from spi_finalize_current_message+0xec/0x184
spi_finalize_current_message from spi_transfer_one_message+0x2a8/0x474
spi_transfer_one_message from __spi_pump_transfer_message+0x104/0x230
__spi_pump_transfer_message from __spi_transfer_message_noqueue+0x30/0xc4
__spi_transfer_message_noqueue from __spi_sync+0x204/0x248
__spi_sync from spi_sync+0x24/0x3c
spi_sync from mcp251xfd_regmap_crc_read+0x124/0x28c [mcp251xfd]
mcp251xfd_regmap_crc_read [mcp251xfd] from _regmap_raw_read+0xf8/0x154
_regmap_raw_read from _regmap_bus_read+0x44/0x70
_regmap_bus_read from _regmap_read+0x60/0xd8
_regmap_read from regmap_read+0x3c/0x5c
regmap_read from mcp251xfd_alloc_can_err_skb+0x1c/0x54 [mcp251xfd]
mcp251xfd_alloc_can_err_skb [mcp251xfd] from mcp251xfd_irq+0x194/0xe70 [mcp251xfd]
mcp251xfd_irq [mcp251xfd] from irq_thread_fn+0x1c/0x78
irq_thread_fn from irq_thread+0x118/0x1f4
irq_thre...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36929 |
Description: In the Linux kernel, the following vulnerability has been resolved:
net: core: reject skb_copy(_expand) for fraglist GSO skbs
SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become
invalid. Return NULL if such an skb is passed to skb_copy or
skb_copy_expand, in order to prevent a crash on a potential later
call to skb_gso_segment.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-36928 |
Description: In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: Fix kernel panic after setting hsuid
Symptom:
When the hsuid attribute is set for the first time on an IQD Layer3
device while the corresponding network interface is already UP,
the kernel will try to execute a napi function pointer that is NULL.
Example:
---------------------------------------------------------------------------
[ 2057.572696] illegal operation: 0001 ilc:1 [#1] SMP
[ 2057.572702] Modules linked in: af_iucv qeth_l3 zfcp scsi_transport_fc sunrpc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nf_tables_set nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink ghash_s390 prng xts aes_s390 des_s390 de
s_generic sha3_512_s390 sha3_256_s390 sha512_s390 vfio_ccw vfio_mdev mdev vfio_iommu_type1 eadm_sch vfio ext4 mbcache jbd2 qeth_l2 bridge stp llc dasd_eckd_mod qeth dasd_mod
qdio ccwgroup pkey zcrypt
[ 2057.572739] CPU: 6 PID: 60182 Comm: stress_client Kdump: loaded Not tainted 4.18.0-541.el8.s390x #1
[ 2057.572742] Hardware name: IBM 3931 A01 704 (LPAR)
[ 2057.572744] Krnl PSW : 0704f00180000000 0000000000000002 (0x2)
[ 2057.572748] R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 2057.572751] Krnl GPRS: 0000000000000004 0000000000000000 00000000a3b008d8 0000000000000000
[ 2057.572754] 00000000a3b008d8 cb923a29c779abc5 0000000000000000 ...
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|
CVE-2024-36927 |
Description: In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix uninit-value access in __ip_make_skb()
KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb()
tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a
race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL
while __ip_make_skb() is running, the function will access icmphdr in the
skb even if it is not included. This causes the issue reported by KMSAN.
Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL
on the socket.
Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These
are union in struct flowi4 and are implicitly initialized by
flowi4_init_output(), but we should not rely on specific union layout.
Initialize these explicitly in raw_sendmsg().
[1]
BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
__ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
ip_finish_skb include/net/ip.h:243 [inline]
ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508
raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common....
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|