CVE-2024-26808 |
Description: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain
Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER
event is reported, otherwise a stale reference to netdevice remains in
the hook list.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-26807 |
Description: In the Linux kernel, the following vulnerability has been resolved:
Both cadence-quadspi ->runtime_suspend() and ->runtime_resume()
implementations start with:
struct cqspi_st *cqspi = dev_get_drvdata(dev);
struct spi_controller *host = dev_get_drvdata(dev);
This obviously cannot be correct, unless "struct cqspi_st" is the
first member of " struct spi_controller", or the other way around, but
it is not the case. "struct spi_controller" is allocated by
devm_spi_alloc_host(), which allocates an extra amount of memory for
private data, used to store "struct cqspi_st".
The ->probe() function of the cadence-quadspi driver then sets the
device drvdata to store the address of the "struct cqspi_st"
structure. Therefore:
struct cqspi_st *cqspi = dev_get_drvdata(dev);
is correct, but:
struct spi_controller *host = dev_get_drvdata(dev);
is not, as it makes "host" point not to a "struct spi_controller" but
to the same "struct cqspi_st" structure as above.
This obviously leads to bad things (memory corruption, kernel crashes)
directly during ->probe(), as ->probe() enables the device using PM
runtime, leading the ->runtime_resume() hook being called, which in
turns calls spi_controller_resume() with the wrong pointer.
This has at least been reported [0] to cause a kernel crash, but the
exact behavior will depend on the memory contents.
[0] https://lore.kernel.org/all/20240226121803.5a7r5wkpbbowcxgx@dhruva/
This issue potentially affects all platforms that are currently ...
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|
CVE-2024-26806 |
Description: In the Linux kernel, the following vulnerability has been resolved:
spi: cadence-qspi: remove system-wide suspend helper calls from runtime PM hooks
The ->runtime_suspend() and ->runtime_resume() callbacks are not
expected to call spi_controller_suspend() and spi_controller_resume().
Remove calls to those in the cadence-qspi driver.
Those helpers have two roles currently:
- They stop/start the queue, including dealing with the kworker.
- They toggle the SPI controller SPI_CONTROLLER_SUSPENDED flag. It
requires acquiring ctlr->bus_lock_mutex.
Step one is irrelevant because cadence-qspi is not queued. Step two
however has two implications:
- A deadlock occurs, because ->runtime_resume() is called in a context
where the lock is already taken (in the ->exec_op() callback, where
the usage count is incremented).
- It would disallow all operations once the device is auto-suspended.
Here is a brief call tree highlighting the mutex deadlock:
spi_mem_exec_op()
...
spi_mem_access_start()
mutex_lock(&ctlr->bus_lock_mutex)
cqspi_exec_mem_op()
pm_runtime_resume_and_get()
cqspi_resume()
spi_controller_resume()
mutex_lock(&ctlr->bus_lock_mutex)
...
spi_mem_access_end()
mutex_unlock(&ctlr->bus_lock_mutex)
...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-26805 |
Description: In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter
syzbot reported the following uninit-value access issue [1]:
netlink_to_full_skb() creates a new `skb` and puts the `skb->data`
passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data
size is specified as `len` and passed to skb_put_data(). This `len`
is based on `skb->end` that is not data offset but buffer offset. The
`skb->end` contains data and tailroom. Since the tailroom is not
initialized when the new `skb` created, KMSAN detects uninitialized
memory area when copying the data.
This patch resolved this issue by correct the len from `skb->end` to
`skb->len`, which is the actual data offset.
BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
it...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-26804 |
Description: In the Linux kernel, the following vulnerability has been resolved:
net: ip_tunnel: prevent perpetual headroom growth
syzkaller triggered following kasan splat:
BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191
[..]
kasan_report+0xda/0x110 mm/kasan/report.c:588
__skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline]
___skb_get_hash net/core/flow_dissector.c:1791 [inline]
__skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856
skb_get_hash include/linux/skbuff.h:1556 [inline]
ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748
ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592
...
ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
..
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831
ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]...
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-26803 |
Description: In the Linux kernel, the following vulnerability has been resolved:
net: veth: clear GRO when clearing XDP even when down
veth sets NETIF_F_GRO automatically when XDP is enabled,
because both features use the same NAPI machinery.
The logic to clear NETIF_F_GRO sits in veth_disable_xdp() which
is called both on ndo_stop and when XDP is turned off.
To avoid the flag from being cleared when the device is brought
down, the clearing is skipped when IFF_UP is not set.
Bringing the device down should indeed not modify its features.
Unfortunately, this means that clearing is also skipped when
XDP is disabled _while_ the device is down. And there's nothing
on the open path to bring the device features back into sync.
IOW if user enables XDP, disables it and then brings the device
up we'll end up with a stray GRO flag set but no NAPI instances.
We don't depend on the GRO flag on the datapath, so the datapath
won't crash. We will crash (or hang), however, next time features
are sync'ed (either by user via ethtool or peer changing its config).
The GRO flag will go away, and veth will try to disable the NAPIs.
But the open path never created them since XDP was off, the GRO flag
was a stray. If NAPI was initialized before we'll hang in napi_disable().
If it never was we'll crash trying to stop uninitialized hrtimer.
Move the GRO flag updates to the XDP enable / disable paths,
instead of mixing them with the ndo_open / ndo_close paths.
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|
CVE-2024-26802 |
Description: In the Linux kernel, the following vulnerability has been resolved:
stmmac: Clear variable when destroying workqueue
Currently when suspending driver and stopping workqueue it is checked whether
workqueue is not NULL and if so, it is destroyed.
Function destroy_workqueue() does drain queue and does clear variable, but
it does not set workqueue variable to NULL. This can cause kernel/module
panic if code attempts to clear workqueue that was not initialized.
This scenario is possible when resuming suspended driver in stmmac_resume(),
because there is no handling for failed stmmac_hw_setup(),
which can fail and return if DMA engine has failed to initialize,
and workqueue is initialized after DMA engine.
Should DMA engine fail to initialize, resume will proceed normally,
but interface won't work and TX queue will eventually timeout,
causing 'Reset adapter' error.
This then does destroy workqueue during reset process.
And since workqueue is initialized after DMA engine and can be skipped,
it will cause kernel/module panic.
To secure against this possible crash, set workqueue variable to NULL when
destroying workqueue.
Log/backtrace from crash goes as follows:
[88.031977]------------[ cut here ]------------
[88.031985]NETDEV WATCHDOG: eth0 (sxgmac): transmit queue 1 timed out
[88.032017]WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:477 dev_watchdog+0x390/0x398
[88.032251]---[ end trace e70de432e4d5c2c0 ]---
[88.032282]sxgmac 16d88000.ethernet eth0: Reset ada...
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|
CVE-2024-26801 |
Description: In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here's the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth ]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth ]
hci_error_reset+0x4f/0xa4 [bluetooth ]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-26800 |
Description: In the Linux kernel, the following vulnerability has been resolved:
tls: fix use-after-free on failed backlog decryption
When the decrypt request goes to the backlog and crypto_aead_decrypt
returns -EBUSY, tls_do_decryption will wait until all async
decryptions have completed. If one of them fails, tls_do_decryption
will return -EBADMSG and tls_decrypt_sg jumps to the error path,
releasing all the pages. But the pages have been passed to the async
callback, and have already been released by tls_decrypt_done.
The only true async case is when crypto_aead_decrypt returns
-EINPROGRESS. With -EBUSY, we already waited so we can tell
tls_sw_recvmsg that the data is available for immediate copy, but we
need to notify tls_decrypt_sg (via the new ->async_done flag) that the
memory has already been released.
EPSS Score: 0.04%
December 20th, 2024 (4 months ago)
|
CVE-2024-26799 |
Description: In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix uninitialized pointer dmactl
In the case where __lpass_get_dmactl_handle is called and the driver
id dai_id is invalid the pointer dmactl is not being assigned a value,
and dmactl contains a garbage value since it has not been initialized
and so the null check may not work. Fix this to initialize dmactl to
NULL. One could argue that modern compilers will set this to zero, but
it is useful to keep this initialized as per the same way in functions
__lpass_platform_codec_intf_init and lpass_cdc_dma_daiops_hw_params.
Cleans up clang scan build warning:
sound/soc/qcom/lpass-cdc-dma.c:275:7: warning: Branch condition
evaluates to a garbage value [core.uninitialized.Branch]
EPSS Score: 0.05%
December 20th, 2024 (4 months ago)
|